Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Four bromo-substituted pyrazoline and isoxazolinone spiro derivatives

Giuseppe Bruno, ${ }^{\text {a* }}$ Francesco Nicoló, ${ }^{\text {a }}$ Archimede Rotondo, ${ }^{\text {a }}$ Francesco Foti, ${ }^{\text {b }}$ Francesco Risitano ${ }^{\text {b }}$ and Giovanni Grassi ${ }^{\text {b }}$

${ }^{\text {a }}$ Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, 98166 Vill. S. Agata - Messina, Italy, and ${ }^{\mathbf{b}}$ Dipartimento di Chimica Organica e Biologica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata - Messina, Italy
Correspondence e-mail: bruno@chem.unime.it

Received 5 July 2004
Accepted 8 September 2004
Online 11 November 2004

Conformational analyses and a structural comparison of the four spiro compounds 3-bromo-1,9-diphenyl-4-p-tolyl-7-oxa-1,2,8-triazaspiro[4.4]nona-2,8-dien-6-one, (I), $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$, 3-bromo-4-(4-methoxyphenyl)-1,9-diphenyl-7-oxa-1,2,8-triaza-spiro[4.4]nona-2,8-dien-6-one, (II), $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$, 3-bromo-4-(4-chlorophenyl)-1,7,9-triphenyl-1,2,7,8-tetraazaspiro[4.4]-nona-2,8-dien-6-one, (III), $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrClN}_{4} \mathrm{O}$, and 3-bromo-1,7,9-triphenyl-4- p-tolyl-1,2,7,8-tetraazaspiro[4.4]nona-2,8-di-en-6-one, (IV), $\mathrm{C}_{30} \mathrm{H}_{22.89} \mathrm{Br}_{1.11} \mathrm{~N}_{4} \mathrm{O}$, are presented. The molecular structures are rather similar, which is as expected since the compounds are all products of concerted 1,3-dipolar attack on (Z)-4-arylidene oxazolone and pyrazolone derivatives. The observed conformations tend to favour extended π conjugation of the benzene rings and other π systems, as shown by a comparison of selected geometric parameters of the four structures.

Comment

Spirans are organic compounds often present in natural products (Oh et al., 2003). The creation of stereogenic quaternary C centres is a challenging task in organic chemistry, especially for spiro-centres (Hughes et al., 2001). Because of their ability to generate a surrounding asymmetrical space, spirans have been exploited for asymmetric synthesis, molecular recognition and catalysis. The synthesis of biologically active heterocyclic spiro compounds (Negoro et al., 1998) has mainly been addressed towards structures mimicking peptide β-turn secondary structures (Braña et al., 2002). This is of particular interest when the rigidly mimicked conformation is also the bioactive one. Furthermore, the non-peptide nature of spiro compounds may prevent possible unwanted side effects (Khalil et al., 1999).

The synthesis of a new dipolar intermediate, namely C-bromo- N-phenylnitrilimine, (Foti et al., 1999), enabled us to
obtain, by cycloaddition with selected dipolarophiles, 3bromopyrazoles with interesting biopharmacological properties. The introduction of a Br substituent might increase the biological activity of related derivatives. In this context, we report the crystal structures of the four title bromo compounds, (I)-(IV). These spiro compounds are composed of substituted isoxazolinone or pyrazolinone rings, connected to pyrazoline rings through the asymmetric C 5 spiro-centre. Beyond the spiro-centre, another asymmetric atom, C 9 , is present (Figs. 1-4). The conventional configuration label (Chan et al., 1996) of this atom is always inverted with respect to the other asymmetric centre, C9. Therefore, the crystals of these compounds are $(5 R, 9 S)-(5 S, 9 R)$ racemic mixtures, and all crystallize in centrosymmetric space groups.

(I) $X=\mathrm{Mc}$
(II) $X=\mathrm{McO}$

(III) $X=\mathrm{Cl}$
(IV) $X=\mathrm{Mc}$

The structures of (I) and (II) are very similar, as are those of (III) and (IV), as they differ only in the para substituent of the aromatic ring attached to C 9 . Since the four conformations are reasonably similar, we will discuss these two pairs together, reporting the four respective values for each mentioned geometric parameter or referring to the comparative table listed below (Table 4). The two core rings are oriented almost perpendicular to one another, with the angles between their mean planes being 89.0 (1), 88.5 (2), 87.7 (1) and $88.6(2)^{\circ}$, respectively.

The isoxazolinone rings in (I) and (II), and the pyrazolinone rings in (III) and (IV), are less puckered [maximum deviations from the mean plane for atom C1 are 0.045 (4), 0.066 (6), 0.081 (4) and 0.040 (4) \AA, respectively] than the corresponding pyrazoline rings, which show a slight envelope-like distortion: atom C 5 is always above the mean plane, by

Figure 1
The ($5 R, 9 S$)-isomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The $(5 R, 9 S)$-isomer of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 3
The $(5 R, 9 S)$-isomer of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 4
The $(5 R, 9 S)$-isomer of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed outlines indicate the disordered methyl group and Br atom.
0.197 (4), 0.094 (6), 0.142 (4) and 0.143 (4) Å, respectively. Cremer \& Pople (1975) puckering parameters for the C5/N6/ $\mathrm{N} 7 / \mathrm{C} 8 / \mathrm{C} 9$ ring are $q_{2}=0.287$ (3), 0.142 (5), 0.214 (4) and 0.239 (4) Å, respectively, and $\varphi_{2}=-5.9$ (7), 5 (2), -2 (1) and $-6(1)^{\circ}$, respectively. This is expected because of the further chiral $s p^{3}$-hybridized endocyclic C atom present in pyrazolines.

The aromatic rings conjugated with endocyclic double bonds or $s p^{2}$-hybridized atoms tend to lie in the same plane as the attached core rings, developing extended π conjugations. On the other hand, these are partially hampered because of steric hindrance (see Table 4 for a comparison of torsion angles and angles between mean planes). These quasicoplanar orientations of the aromatic rings are also supported by intramolecular dipolar interactions between aromatic ortho- H and electronegative $\mathrm{N} 3, \mathrm{O} 1$ and N 7 atoms, which are sometimes cited as intramolecular hydrogen bonds (see Tables $1-3)$.

In compound (I), the packing is mainly characterized by an unusual intermolecular interaction between atom Br 1 and the $\mathrm{N} 3-\mathrm{O} 2$ bond $\left[\mathrm{Br} 1 \cdots \mathrm{O} 2^{\mathrm{i}}=3.310(3) \AA\right.$ and $\mathrm{Br} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}=$ 3.377 (3) \AA; symmetry code: (i) $\left.\frac{3}{2}-x, y-\frac{1}{2}, z\right]$, which may be interpreted as a stabilizing intermolecular combination between a Br atomic orbital and the lowest unoccupied molecular anti-bonding orbital centred on the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ system of the next molecule along the crystallographic screw b axis (Fig. 4). Other weak dipolar interactions and a hydrogen bond (Table 1) contribute to the three-dimensional packing.

Figure 5

The crystal packing of (I), showing the intermolecular interactions between Br 1 and atoms O 2 and N 3 of another molecule (dotted lines). Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $\left(\frac{3}{2}-x, y+\frac{1}{2}, z\right)$ and $\left(\frac{3}{2}-x, y-\frac{1}{2}, z\right)$, respectively.

In compound (II), the three-dimensional structure is generated by weak intermolecular dipolar interactions. As usual for these systems, there is an interaction between the carbonyl O atom and the methyl group of another molecule. Although it is too weak to be considered as a hydrogen

Figure 6
The crystal packing of (II), showing the weak interaction, doubled by the crystallographic inversion centre, stabilizing the dimers (dotted lines). Atoms marked with a hash (\#) are generated through inversion.

Figure 7
The crystal packing of (III), showing the formation of molecular chains along the [101] direction. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $\left(x+\frac{1}{2}, \frac{3}{2}-y, z+\frac{1}{2}\right)$ and $\left(x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}\right)$, respectively.
bond [C28 $\cdots \mathrm{O} 1=3.376$ (9) \AA and $\mathrm{H} 28 \cdots \mathrm{O} 1=2.644$ (5) \AA, and $\left.\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 1=133.3(4)^{\circ}\right]$, it is doubled because it occurs between objects related by a symmetry inversion centre, thus forming dimers with an $R_{2}^{2}(22)$ first-order graph set (Fig. 5).

The crystal packing of (III) is dominated by dipolar interactions. Among these, we mention the intermolecular interaction between atom H 27 and the Cl atom of another molecule, which could be interpreted as a weak hydrogenbond interaction, creating one-dimensional $C(11)$ chains along the [101] axis (Fig. 6).

The structure of (IV) presented more problems in the refinement because of the presence of small amounts (about $10-15 \%$, varying across the several tested samples) of a side product which occupies the same crystallographic site, but bearing another Br atom substituted on the aromatic C25 atom (Fig. 3). These molecules are embedded in the lattice packing (atom Br 2 interacts with the aromatic π system of other molecules). Several polar and dipolar interactions support the overall crystal packing.

Experimental

Products (I) and (II) were obtained from C-bromo- N-phenylnitrilimine, generated in situ, and (Z)-4-(arylmethylidene)oxazol-5-ones, as described previously by Foti et al. (2001). The same procedure, but using (Z)-4-(arylmethylidene)pyrazol-5-ones, led to the formation of (III) and (IV). After purification of the products, crystals suitable for X-ray analysis were obtained from chloroform solutions by slow evaporation.

Compound (I)

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$
$M_{r}=460.32$
Orthorhombic, Pbca
$a=14.180$ (2) \AA
$b=16.076$ (2) \AA
$c=18.413(2) \AA$
$V=4197.4(9) \AA^{3}$
$Z=8$
$D_{x}=1.457 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker P4 diffractometer
$2 \theta / \omega$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.414, T_{\text {max }}=0.573$
5243 measured reflections
4267 independent reflections
1805 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.053$
$w R\left(F^{2}\right)=0.105$
$S=1.00$
4267 reflections
273 parameters
H -atom parameters constrained
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-1 \rightarrow 17$
$k=-1 \rightarrow 20$
$l=-1 \rightarrow 23$
3 standard reflections every 197 reflections intensity decay: none

Mo $K \alpha$ radiation

Cell parameters from 30 reflections
$\theta=5.3-12.5^{\circ}$
$\mu=1.98 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Irregular, light yellow
$0.40 \times 0.32 \times 0.28 \mathrm{~mm}$
intensity decay: none

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0333 P)^{2}\right. \\
&+1.0734 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned} .
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.00148 (12)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 28-\mathrm{H} 28 C \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.55	$3.482(5)$	163

Symmetry code: (i) $x-\frac{1}{2}, y, \frac{3}{2}-z$.

Compound (II)

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$
$M_{r}=476.32$
Monoclinic, $C 2 / c$
$a=35.375$ (3) \AA
$b=9.200$ (1) A
$c=12.807(2) \AA$
$\beta=94.81$ (1) ${ }^{\circ}$
$V=4153.2(9) \AA^{3}$
$Z=8$
$D_{x}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 44
reflections
$\theta=5.2-15.4^{\circ}$
$\mu=2.01 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prismatic, yellow
$0.50 \times 0.23 \times 0.15 \mathrm{~mm}$
Data collection
Bruker P4 diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.388, T_{\text {max }}=0.739$
4814 measured reflections
4047 independent reflections
2153 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.067$
$w R\left(F^{2}\right)=0.200$
$S=1.08$
4047 reflections
282 parameters

Compound (III)

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrClN}_{4} \mathrm{O}$
$M_{r}=555.85$
Monoclinic, $C 2 / c$
$a=16.735(1) \AA$
$b=21.454(2) \AA$
$c=14.254(1) \AA$
$\beta=100.498(6)^{\circ}$
$V=5032.3(7) \AA^{\circ}$
$Z=8$

Data collection

Bruker $P 4$ diffractometer	$R_{\text {int }}=0.023$
ω scans	$\theta_{\max }=25^{\circ}$
Absorption correction: empirical	$h=-1 \rightarrow 19$
\quad (North et al., 1968)	$k=-1 \rightarrow 25$
$\quad T_{\min }=0.577, T_{\max }=0.714$	$l=-16 \rightarrow 16$
5121 measured reflections	3 standard reflections
4365 independent reflections	every 197 reflections
2467 reflections with $I>2 \sigma(I)$	intensity decay: none
Refinement	
Refinement on F^{2}	
$R(F)=0.049$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0238 P)^{2}\right.$
$w R\left(F^{2}\right)=0.104$	$\quad+11.4647 P]$
$S=1.03$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
4365 reflections	$(\Delta / \sigma)_{\max }<0.001$
327 parameters	$\Delta \rho_{\max }=0.37 \mathrm{e} \AA \AA^{-3}$
H-atom parameters constrained	$\Delta \rho_{\min }=-0.32$ e \AA^{-3}
	Extinction correction: $S H E L X L 97$
	Extinction coefficient: $0.00045(7)$

$\theta_{\text {max }}=26^{\circ}$
$h=-1 \rightarrow 43$
$k=-11 \rightarrow 1$
$l=-15 \rightarrow 15$
3 standard reflections
every 197 reflections
intensity decay: none

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right.$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}
$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 52
reflections
$\theta=2.9-15.4^{\circ}$
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Irregular, pale yellow
$0.39 \times 0.30 \times 0.19 \mathrm{~mm}$
$R_{\text {int }}=0.023$
$\theta_{\max }=25^{\circ}$
$h=-1 \rightarrow 19$
$k=-1 \rightarrow 25$
$l=-16 \rightarrow 16$
3 standard reflections
\quad every 197 reflections

Table 2
Short intramolecular contacts ($\AA{ }^{\circ}{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15 $\cdots \mathrm{O} 1$	0.93	2.52	$3.022(6)$	114
C21-H21 3 N	0.93	2.48	$2.802(6)$	100
C23-H23 $\cdots \mathrm{N} 7$	0.93	2.43	$2.756(6)$	101

Compound (IV)

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{22.89} \mathrm{Br}_{1.11} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=544.11$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=10.107$ (1) A
$b=13.578$ (3) \AA
$c=19.146$ (3) \AA
$\beta=98.50(1)^{\circ}$
$V=2598.6(8) \AA^{3}$
$Z=4$
$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=4.4-16.0^{\circ}$
$\mu=1.78 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prismatic, colourless
$0.36 \times 0.34 \times 0.18 \mathrm{~mm}$

$$
\theta_{\max }=25^{\circ}
$$

$h=-1 \rightarrow 12$
$k=-16 \rightarrow 1$
$l=-22 \rightarrow 22$
3 standard reflections every 197 reflections intensity decay: none

5812 measured reflections
4510 independent reflections
2455 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0641 P)^{2}\right. \\
&+0.8649 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 3
Short intramolecular contacts ($\AA{ }^{\circ}{ }^{\circ}$) for (IV).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15 \cdots O1	0.93	2.35	$2.967(7)$	124
C11-H11 N 3	0.93	2.39	$2.742(7)$	102

The X-ray diffraction analyses gave an orthorhombic crystal system for (I), and monoclinic systems for (II), (III) and (IV). These space groups were hypothesized to be centrosymmetric during the data-reduction procedure and finally confirmed by the subsequent analyses. All H atoms were treated as riding, with alkyl $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$, methyl C-H distances of $0.96 \AA$ and aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. All data were measured at 298 (2) K. For disordered methyl groups, a special SHELXL97 (Sheldrick, 1997) instruction, defining six sites with fractional occupancy factors (AFIX 127), was applied. Intensities, which in some cases were calculated by profile fitting (Lehman \& Larsen, 1974), were corrected for absorption using the ψ-scan procedure (North et al., 1968). During the refinement of the structure of (IV), we observed a consistent electron density $\left(3.5\right.$ e $\left.\AA^{-3}\right) 1.7 \AA$ from atom C25. It is known that, during the reaction, atom C25

Table 4
Comparison of selected distances, torsion angles and angles between mean planes ($\AA{ }^{\circ}{ }^{\circ}$) for (I), (II), (III) and (IV).

	(I)					(II)	(III)	(IV)
Br1-C8	$1.864(4)$	$1.873(6)$	$1.870(4)$	$1.878(5)$				
O1-C1	$1.189(5)$	$1.181(7)$	$1.201(4)$	$1.198(5)$				
N3-O2/N2 \dagger	$1.454(4)$	$1.451(7)$	$1.408(4)$	$1.397(5)$				
N3-C4	$1.286(4)$	$1.275(7)$	$1.288(5)$	$1.298(6)$				
C4-C10/C16	$1.455(5)$	$1.483(8)$	$1.467(5)$	$1.450(6)$				
N6-N7	$1.418(4)$	$1.412(7)$	$1.406(4)$	$1.398(5)$				
N6-C16/C22	$1.422(5)$	$1.420(8)$	$1.428(6)$	$1.404(6)$				
N7-C8	$1.273(5)$	$1.272(8)$	$1.272(5)$	$1.257(6)$				
N3-C4-C10/C16-C15/C21	$146.3(4)$	$8.4(9)$	$1.8(6)$	$-16.5(7)$				
C5-C4-C10/C16-C15/C21	$-43.2(6)$	$-173.2(6)$	$175.2(4)$	$156.2(5)$				
N3-C4-C10/C16-C11/C21	$-32.6(6)$	$-171.9(6)$	$-177.2(4)$	$163.2(5)$				
C5-C4-C10/C16-C11/C21	$138.0(4)$	$6.5(9)$	$-3.8(7)$	$-24.1(7)$				
N7-N6-C16/C22-C21/C23	$175.0(3)$	$9.8(8)$	$6.6(6)$	$16.4(7)$				
C5-N6-C16/C22-C21/C23	$-51.4(5)$	$149.6(6)$	$145.7(4)$	$159.7(4)$				
N7-N6-C16/C22-C17/C27	$-2.2(5)$	$-173.1(5)$	$-175.6(4)$	$-168.2(4)$				
C5-N6-C16/C22-C17/C27	$131.4(4)$	$-33.3(8)$	$-36.5(6)$	$-24.9(7)$				
O2/N2-N3-C4-C5	$4.5(5)$	$7.1(7)$	$5.1(5)$	$5.0(5)$				
O2/N3-N3-C4-C10/C16	$176.3(3)$	$-174.3(5)$	$179.5(3)$	$178.9(4)$				
Pyrazolone-N3Ph			$23.8(2)$	$5.2(2)$				
Isox[pyr]azolone-C4Ph	$36.9(1)$	$9.2(2)$	$0.9(2)$	$19.7(2)$				
Pyrazoline-N6Ph	$27.7(1)$	$24.2(2)$	$20.4(2)$	$9.9(2)$				

\dagger For pairs of atom labels, the first label applies to compounds (I) and (II), while the second label applies to compounds (III) and (IV).
could be brominated, leading to a known side product. Thus, despite the relatively short distance, the model was refined by optimizing the occupancy factor of a Br atom partially replacing atom H 25 . Although the resulting $\mathrm{C}-\mathrm{Br}$ distance of 1.707 (8) \AA is more reminiscent of a $\mathrm{C}-\mathrm{Cl}$ distance, the mass spectrum of (IV) clearly showed the presence of the second Br substituent and unambiguously ruled out the presence of chlorine. In the final refinement, the occupancy factor of atom Br 2 was found to be 0.11 and was fixed in order to reduce the number of parameters, so that in the solid state there are 11% of dibrominated molecules.

For all four compounds, data collection: XSCANS (Siemens, 1989); cell refinement: XSCANS; data reduction: XPREPW (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Bruker, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and WinGX-PC (Version 1.6.4.05; Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1337). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Braña, M. F., Garranzo, M., de Pascual-Teresa, B., Peréz-Castels, J. \& Torres, M. R. (2002). Tetrahedron, 58, 4825-4836.

Bruker (1997). XPREP (Version 5.1) and XPW (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, R.S., Ingold, C. \& Prelog, V. (1996). Angew. Chem. Int. Ed. Engl. 5, 385415.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Foti, F., Grassi, G. \& Risitano, F. (1999). Tetrahedron Lett. 40, 347-348.
Foti, F., Grassi, G., Risitano, F., Nicoló, F. \& Rotondo, A. (2001). Helv. Chim. Acta, 84, 3313-3318.
Hughes, R. C., Dvorak, C. A. \& Meyers, A. I. (2001). J. Org. Chem. 66, 55455551.

Khalil, E. M., Ojala, W. H., Pradhan, A., Nair, V. D., Gleason, W. B., Mishra, R. K. \& Johnson, R. L. (1999). J. Med. Chem. 42, 628-637.

Lehman, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Negoro, T., Murata, M., Ueda, S., Fujitani, B., Ono, Y., Kuromiya, A., Kormiya, M., Suzuki, K. \& Matsumoto, J.-I. (1998). J. Med. Chem. 41, 4118-4129.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Oh, H., Swenson, D. C., Gloer, J. B. \& Shearer, C. A. (2003). J. Nat. Prod. 66, 73-79.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

